Transient increase of manganese-superoxide dismutase in remote brain areas after focal photothrombotic cortical lesion.

نویسندگان

  • H J Bidmon
  • K Kato
  • A Schleicher
  • O W Witte
  • K Zilles
چکیده

BACKGROUND AND PURPOSE Free radicals including superoxide are responsible for postlesional cytotoxicity. In contrast to the constitutive CuZn-superoxide dismutases (SODs), manganese-superoxide dismutase (Mn-SOD) is inducible and has the potential to protect neurons by its superoxide dismutating activity. Therefore, we studied the presence and the regional changes in Mn-SOD within the brain after focal cortical ischemia. METHODS Focal cortical photothrombotic lesions were produced in the hindlimb region of rat brains. Animals were anesthetized and transcardially perfused with Zamboni's fixative. Mn-SOD was immunohistochemically localized using an antiserum against rat-Mn-SOD. Changes in Mn-SOD immunoreactivity were quantified by image analysis. RESULTS Focal photothrombosis caused a perilesional increase in Mn-SOD after 24 hours, followed by a further significant increase at 48 hours in perilesional cortex, ipsilateral corpus callosum, hippocampus, and thalamus, as well as in a homotopic cortical area within the nonlesioned hemisphere. At day 2, Mn-SOD was present in neurons and astrocytes. Up to day 7, Mn-SOD increased in the entire ipsilateral and contralateral cortex but remained higher elevated in the ipsilateral hippocampus and thalamus. Thereafter, Mn-SOD decreased globally but remained elevated in some cortical neurons up to day 60. CONCLUSIONS The early transient increase of Mn-SOD in distinct brain regions, which are functionally connected via afferents and efferents, suggests that these regions are affected by the injury. It suggests that Mn-SOD protects the cells in these regions from superoxide-induced damage and therefore may limit the retrograde and anterograde spread of neurotoxicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title Early detection of neurodegeneration in brain ischemia by manganese-enhanced MRI

This study aims to employ in vivo manganeseenhanced MRI (MEMRI) to detect neurodegenerative changes in two models of brain ischemia, photothrombotic cortical injury (PCI) and transient middle cerebral artery occlusion (MCAO) in rodents. After systemic Mn injection to both ischemic models, a close pattern of T1-weighted hyperintensity was observed throughout different brain regions in comparison...

متن کامل

L-NAME and 7-Nitroindazole Reduces Brain Injuries in Transient Focal Cerebral Ischemia in Rat

Background: The role of nitric oxide (NO) of endothelial or neuronal origins in cerebral ischemia and reperfusion injuries are far from being settled, extending from being important to not having any role at all.  Objective: To investigate the role of NO of endothelial and neuronal origins in ischemia/reperfusion injuries in focal cerebral ischemia, L-NAME, a non selective NO synthase inhibitor...

متن کامل

Neuroprotection by interleukin-6 is mediated by signal transducer and activator of transcription 3 and antioxidative signaling in ischemic stroke.

BACKGROUND AND PURPOSE Interleukin-6 (IL-6) has been shown to have a neuroprotective effect in brain ischemic injury. However, its molecular mechanisms are still poorly understood. In this study, we investigated the neuroprotective role of the IL-6 receptor (IL-6R) by IL-6 in the reactive oxygen species defense system after transient focal cerebral ischemia (tFCI). METHODS IL-6 was injected i...

متن کامل

اثر محافظتی زعفران در مقابل آسیب‌های اکسیداتیو در ایسکمی مغزی موضعی- موقتی در موش صحرایی

Background: Numerous studies have shown the protective effects of saffron against oxidative damage in a global model of cerebral ischemia, but its effects on brain edema and oxidative ischemic injury in focal ischemic stroke are not completely understood. Therefore, this study was designed to investigate the effects of saffron on brain edema, infarct volume, antioxidant enzyme activity (glutath...

متن کامل

Regulation of Mn-superoxide dismutase activity and neuroprotection by STAT3 in mice after cerebral ischemia.

Cerebral ischemia and reperfusion increase superoxide anions (O(2)(*-)) in brain mitochondria. Manganese superoxide dismutase (Mn-SOD; SOD2), a primary mitochondrial antioxidant enzyme, scavenges superoxide radicals and its overexpression provides neuroprotection. However, the regulatory mechanism of Mn-SOD expression during cerebral ischemia and reperfusion is still unclear. In this study, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stroke

دوره 29 1  شماره 

صفحات  -

تاریخ انتشار 1998